

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS
A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PRE BOARD 2 (2025-26) MATHEMATICS-MARKING KEY

Class: XII
Date: 11-12-25
Admission no:

Time: 3hrs
Max Marks: 80
Roll no:

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D and E.
2. Section A has 20 MCQs carrying 1 mark each
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case-based integrated units of assessment (04 marks each) with sub-parts.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks have been provided. An internal choice has been provided in the 2marks questions of Section E
8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

1.	A	1M
2.	D	1M
3.	D	1M
4.	C	1M
5.	C	1M
6.	A	1M
7.	C	1M
8.	D	1M
9.	A	1M
10.	D	1M
11.	C	1M
12.	C	1M
13.	B	1M
14.	D	1M
15.	B	1M
16.	B	1M
17.	B	1M
18.	D	1M
19.	C	1M
20.	D	1M
21.	$x \equiv 23 \pmod{7}$ $x = 23 + 7, \quad p \in \mathbb{Z}$	1M

	$x = 23, 30, 47, \dots \dots$ $x = 30$ as $21 \leq x < 31$	1M
22.	<p>20. Length of course = 500 meters Time taken by B to cover by 60 meters = 12 seconds. \therefore time taken by B to cover the course = $(100 - 12)$ seconds = 88 seconds = 1 minute 28 seconds</p> <p>OR</p> <p>Calculations Ans 14 hrs</p>	1M 1M 1M 1M
23.	DETERMINANT $K = 5$	1M 1M
24.	FORMULA $A = 20\%$	1M 1M
25.	<p>Let number of necklaces and bracelets produced by firm per day be x and y, respectively. Clearly, $x \geq 0, y \geq 0$</p> <p>\therefore Total number of necklaces and bracelets that the firm can handle per day is at most 24. $\therefore x + y \leq 24$</p> <p>Since it takes one hour to make a bracelet and half an hour to make a necklace and maximum number of hours available per day is 16.</p> <p>$\therefore 12x + y \leq 16$ $\Rightarrow x + 2y \leq 32$</p> <p>Let Z be the profit function. Then, $Z = 100x + 300y$</p> <p>\therefore The given LPP reduces to Maximise $Z = 100x + 300y$ subject to, $x + y \leq 24$ $x + 2y \leq 32$ and $x, y \geq 0$</p>	1M 1M 1M
26.	<p>Speed downstream = 6 km/h, Speed upstream = 4 km/h, Total Time taken = 1 hour, Distance = 2.4 km</p> <p>OR</p> <p>Calculations</p> <p>the quantity of liquid P was $5 \times 4 = 20$ litres and quantity of liquid Q was $7 \times 4 = 28$ litres</p>	2M 1M 2M 1M
27.	Calculations $N = 9$	2M 1M
28.	4.067, 4, 4.03, 4.40, 4.40, 3.73	3M
29.	Calculations $P = Rs 55120$	2M 1M
30.	<p>Getting $f'(x) =$ $6x^2 + 18x + 12 (x)$ $= 6(x + 1)(x + 2)$</p> <p>For increasing $f'(x) > 0$ for decreasing $f'(x) < 0$</p> <p>Increasing $(-\infty, -2) \cup (-1, \infty)$ and Decreasing $(-2, -1)$</p>	2M 1M

31.	<p>Given:</p> $\mu = 2 \text{ cm}, \bar{X} = 2.01 \text{ cm}, n = 10, s^2 = 0.004 \text{ cm}^2$ <p>Step 1: Define Hypotheses</p> $H_0: \mu = 2 \text{ cm}$ $H_1: \mu \neq 2 \text{ cm}$ <p>Step 2: Calculate the Test Statistic</p> $t = \frac{\bar{X} - \mu}{\sqrt{\frac{s^2}{n}}} = \frac{2.01 - 2}{\sqrt{\frac{0.004}{10}}} = 0.476$ <p>Conclusion:</p> <p>Since the calculated value of $t = 0.476$ is less than the critical value at the chosen significance level, the difference between the sample mean and the population mean is not significant.</p>	2M
32.	<p>Let the cost per kg of onion, wheat and rice be:</p> $x, y, z \text{ respectively}$ <p>The system of equations is:</p> $4x + 3y + 2z = 60$ $2x + 4y + 6z = 90$ $6x + 2y + 3z = 70$ <p>Determinant of the coefficient matrix:</p> $\det(A) = 50$ <p>Inverse of the matrix:</p> $A^{-1} = \frac{1}{50} \begin{pmatrix} 0 & -5 & 10 \end{pmatrix}$ <p>Solving, we get:</p> $x = 5, y = 8, z = 8$	3M
33.	<p>Solving for the constants, we get:</p> $A = -\frac{5}{9}, B = \frac{5}{9}, C = \frac{4}{3}$	3M 2M
34.	<p>Initial investment:</p> $200 \times 100 = 20,000$ <p>Final value:</p> $30,000$ <p>CAGR formula:</p> $30000 = 20000(1 + 0.2247)^n$ $\frac{30000}{20000} = (1.2247)^n$ $1.5 = (1.2247)^n$ <p>Taking log:</p> $\log 1.5 = n \log 1.2247$	3M

	$n = \frac{\log 1.5}{\log 1.2247}$ $n \approx \frac{0.1761}{0.0883} \approx 1.99 \approx 2 \text{ years}$	2M
35.	<p>Given: Defective rate $p = 0.05$, sample size $n = 100$ Mean of Poisson distribution:</p> $\lambda = np = 100 \times 0.05 = 5$ <hr/> <p>(1) Probability that none are defective</p> $P(X = 0) = \frac{e^{-5} 5^0}{0!} = e^{-5}$ $P(X = 0) \approx 0.0067$ <hr/> <p>(2) Probability that 5 are defective</p> $P(X = 5) = \frac{e^{-5} 5^5}{5!}$ $= e^{-5} \times \frac{3125}{120}$ $= e^{-5} \times 26.0417$ $P(X = 5) \approx 0.175$	3M
36.	<p>Principal $P = \square 30,00,000$ Rate = 7.5% p.a. compounded monthly $\rightarrow r = \frac{7.5}{12} = 0.625\% = 0.00625$ $n = 20 \times 12 = 240$ $(1.00625)^{240} = 4.4608$</p> <hr/> <p>i) EMI Calculation</p> $EMI = \frac{P \cdot r(1 + r)^n}{(1 + r)^n - 1}$ $EMI = \frac{3000000 \times 0.00625 \times 4.4608}{4.4608 - 1} = \frac{83760}{3.4608} \approx \square 24,220$ <hr/> <p>ii) Interest Paid in 150th Payment</p> <p>Outstanding balance formula:</p> $B = P \frac{(1 + r)^n - (1 + r)^k}{(1 + r)^n - 1}$ <p>For 149 payments:</p> $B_{149} = 3000000 \times \frac{4.4608 - (1.00625)^{149}}{3.4608} \approx \square 11,35,000 \text{ (approx)}$ <p>Interest in 150th month:</p> $\text{Interest} = B_{149} \times r \approx 1135000 \times 0.00625 = \square 7093.75$ <hr/> <p>iii) Principal Paid in 150th Payment</p> $\text{Principal} = EMI - \text{Interest} = 24220 - 7094 \approx \square 17,126$	1M

37.	<p>Normal Distribution Case Study Given: Mean $\mu = 160$ cm, SD $\sigma = 10$ cm</p> <hr/> <p>i) Percentage taller than 175 cm</p> $z = \frac{175 - 160}{10} = 1.5$ <p>Using table: $P(Z > 1.5) = 0.0668 \Rightarrow 6.68\%$</p> <hr/> <p>ii) Percentage between 150 cm and 170 cm</p> $z_1 = \frac{150 - 160}{10} = -1, z_2 = \frac{170 - 160}{10} = 1$ $P(-1 < Z < 1) = 0.6826 \Rightarrow 68.26\%$ <hr/> <p>iii) Expected students shorter than 140 cm (out of 1000)</p> $z = \frac{140 - 160}{10} = -2$ $P(Z < -2) = 0.0228 \Rightarrow 2.28\%$ $1000 \times 0.0228 \approx 23 \text{ students}$ <hr/> <p>OR: Height of Top 10% students</p> $P(Z > z) = 0.10 \Rightarrow Z = 1.28$ $X = \mu + z\sigma = 160 + 1.28(10) = 172.8 \text{ cm}$	1M
38.	<p>Given: decay proportional to quantity \rightarrow exponential decay.</p> <hr/> <p>i) Differential Equation</p> $\frac{dN}{dt} = -kN$ <hr/> <p>ii) Order and Degree Order = 1, Degree = 1</p> $2p + 3q = 2(1) + 3(1) = 5$ <hr/> <p>iii) Expression for amount of radium</p> $N = N_0 e^{-kt}$ <hr/> <p>OR: Find constant k 1.1% decomposed \rightarrow 98.9% remains after 25 years</p> $0.989 = e^{-25k}$ $k = -\frac{\ln(0.989)}{25} \approx 0.00044$	2M
